A Depth Space Approach for Evaluating Distance to Objects - with Application to Human-Robot Collision Avoidance
نویسندگان
چکیده
We present a novel approach to estimate the distance between a generic point in the Cartesian space and objects detected with a depth sensor. This information is crucial in many robotic applications, e.g., for collision avoidance, contact point identification, and augmented reality. The key idea is to perform all distance evaluations directly in the depth space. This allows distance estimation by considering also the frustum generated by the pixel on the depth image, which takes into account both the pixel size and the occluded points. Different techniques to aggregate distance data coming from multiple object points are proposed. We compare the Depth space approach with the commonly used Cartesian space or Configuration space approaches, showing that the presented method provides better results and faster execution times. An application to human-robot collision avoidance using a KUKA LWR IV robot and a Microsoft Kinect sensor illustrates the effectiveness of the approach.
منابع مشابه
A Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کامل3D Collision Detection for Industrial Robots and Unknown Obstacles using Multiple Depth Images
In current industrial applications without sensor surveillance, the robot workcell needs to be rather static. If the environment of the robot changes in an unplanned manner, e. g. a human enters the workcell and crosses the trajectory, a collision could result. Current research aims at relaxing the separation of robot and human workspaces. We present the first approach that uses multiple 3D dep...
متن کاملCollision Prediction and Avoidance Amidst Moving Objects for Trajectory Planning Applications
In this paper, a novel methodology for computing a collision-free trajectory for mobile robots amidst moving objects is presented. This planner is based on a new technique for computing the minimum translational distance between two mobile objects. This distance is then used for predicting and avoiding a collision. The computation of this distance is based on the application of the GJK algorith...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 80 شماره
صفحات -
تاریخ انتشار 2015